An oceanic fixed nitrogen sink exceeding 400 Tg N a − 1 vs the concept of homeostasis in the fixed - nitrogen inventory
نویسنده
چکیده
Measurements of the N2 produced by denitrification, a better understanding of non-canonical pathways for N2 production such as the anammox reaction, better appreciation of the multiple environments in which denitrification can occur (e.g. brine pockets in ice, within particles outside of suboxic water, etc.) suggest that it is unlikely that the oceanic denitrification rate is less than 400 Tg N a−1. Because this sink term far exceeds present estimates for nitrogen fixation, the main source for oceanic fixed-N, there is a large apparent deficit (∼200 Tg N a−1) in the oceanic fixed-N budget. The size of the deficit appears to conflict with apparent constraints of the atmospheric carbon dioxide and sedimentary δ15N records that suggest homeostasis during the Holocene. In addition, the oceanic nitrate/phosphate ratio tends to be close to the canonical Redfield biological uptake ratio of 16 (by N and P atoms) which can be interpreted to indicate the existence of a powerful feed-back mechanism that forces the system towards a balance. The main point of this paper is that one cannot solve this conundrum by reducing the oceanic sink term. To do so would violate an avalanche of recent data on oceanic denitrification. A solution to this problem may be as simple as an upwards revision of the oceanic nitrogen fixation rate, and it is noted that most direct estimates for this term have concentrated on nitrogen fixation by autotrophs in the photic zone, even though nitrogen fixing genes are widespread. Another simple explanation may be that we are simply no longer in the Holocene and one might expect to see temporary imbalances in the oceanic fixed-N budget as we transition from the Holocene to the Anthropocene in line with an apparent denitrification maximum during the Glacial-Holocene transition. Other possible full or partial explanations involve plausible changes in the oceanic nitrate/phosphate and N/C ratios, an oceanic phosphorus budget that may also be in deficit, and Correspondence to: L. A. Codispoti ([email protected]) oscillations in the source and sink terms that are short enough to be averaged out in the atmospheric and geologic records, but which could, perhaps, last long enough to have significant impacts.
منابع مشابه
Isotopic constraints on the pre-industrial oceanic nitrogen budget
The size of the bioavailable (i.e., “fixed”) nitrogen inventory in the ocean influences global marine productivity and the biological carbon pump. Despite its importance, the pre-industrial rates for the major source and sink terms of the oceanic fixed nitrogen budget, N2 fixation and denitrification, respectively, are not well known. These processes leave distinguishable imprints on the ratio ...
متن کاملIron availability limits the ocean nitrogen inventory stabilizing feedbacks between marine denitrification and nitrogen fixation
[1] Recent upward revisions in key sink/source terms for fixed nitrogen (N) in the oceans imply a short residence time and strong negative feedbacks involving denitrification and N fixation to prevent large swings in the ocean N inventory over timescales of a few centuries. We tested the strength of these feedbacks in a global biogeochemical elemental cycling (BEC) ocean model that includes wat...
متن کاملHeterotrophic denitrification vs. autotrophic anammox – quantifying collateral effects on the oceanic carbon cycle
The conversion of fixed nitrogen to N2 in suboxic waters is estimated to contribute roughly a third to total oceanic losses of fixed nitrogen and is hence understood to be of major importance to global oceanic production and, therefore, to the role of the ocean as a sink of atmospheric CO2. At present heterotrophic denitrification and autotrophic anammox are considered the dominant sinks of fix...
متن کاملResponses of root growth and distribution of maize to nitrogen application patterns under partial root-zone irrigation
A field experiment was carried out to investigate the effects of varying nitrogen (N) supply andirrigation methods on the root growth and distribution of maize (Zea mays L.) in Wuwei,northwest China in 2011 and 2012. The irrigation treatments included alternate furrow irrigation(AI), fixed furrow irrigation (FI) and conventional furrow irrigation (CI). The N supply treatmentsincluded alternate ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007